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Abstract

Large language models (LLMSs) such as the GPT series exhibit impressive reasoning and in-context learning
capabilities due to the substantial amount of data and computational resources involved in LLM training. Some
previous studies have applied the LLMs to vision-and-language navigation (VLN) in order to create navigation agents
that are entirely LLM-based, operating within a zero-shot setting, aiming to reveal and utilize LLMs' reasoning and
planning capability for VLN tasks. However, these methods employ text-based LLMs for navigation agents,
generating a text description of environmental observations during navigation. Other smaller LLMs are used for
image-to-text translation, resulting in a gap between image-to-text translation and environmental navigation.
Moreover, the high cost of advanced LLMs such as GPT-4 also hinders the application of LLM-based navigation
agents. This is particularly the case given the increasing length of the context, which includes navigation history and
the numerous visual images generated during navigation. In this paper, we propose NavGemini, a navigation system
based entirely on the newly developed multi-modal LLM, Gemini-Pro-Vision. Our aim is to study and utilize the
visual-spatial and multi-modal capabilities of LLMs in VLN tasks, while mitigating the challenges posed by token
limits when LLMs process large amounts of image-based data and historical information, and when the available
multi-modal LLMs perform relatively poorly. Our proposed NavGemini, with its elaborate prompts, successfully
outperforms previous methods by 5.7% in terms of success rate, even when using inferior LLMs. This demonstrates
the strong ability and potential of multi-modal LLM-based agents in VLN tasks.
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1 Introduction

Large language models (LLM) [1-4] have demonstrated
impressive capabilities across various domains. Due to
their strong reasoning capability when scaling up the
model, LLMs are deemed to be one of the promising path-
ways to realize a universal embodied agent [5-8], in which
the LLMs can provide cross-domain knowledge and anal-
ysis in decision-making or motion control.
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Recently, LLMs have been applied to the area of vision-
and-language navigation (VLN) [9, 10], where the em-
bodied agents equipped with cameras need to perceive
and navigate the indoor environment following the given
human instructions. Previous VLN methods train agents
with large-scale training data collected from similar indoor
environments with intensive human labor, which is expen-
sive and domain-specific. LLM-based VLN agents [11, 12]
address the issue by incorporating LLMs into their con-
struction and formulating the VLN as a zero- or few-shot
learning process. Such LLM-based agents reduce training
costs and reliance on annotated datasets, while improving
their generalizability (e.g., from simulated to real environ-
ments, or from seen to unseen environments).
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[ Instruction: Enter the door to the left of the globe. Walk forward ... Wait here. ]

hallway with wooden doors and an archway, and a

The scene depicts a bathroom with glass doors, a
hallway with a wooden door and glass.

Textual description by Blip-2
LLM

[ The scene depicts a room with a globe and a desk, a ]

wooden door, and a ceiling with a light fixture and a
door.

Neighbor B

Multi-modal

LLM
The instruction says "Enter the door to the left of the
( lobe". In Image A, there is a globe to the right of the q
glo ge A, g g
door. So the door to the left of the globe is the door i A

shown in Image A.

Figure 1 The comparison between text-modal LLM-based agent and
multi-modal large language model (LLM)-based agent in VLN tasks.
The image-to-text translation ignores the context of the instruction
and tasks and thus generates inaccurate and misleading descriptions
for the text-modal LLM. The multi-modal LLM successfully
understands the difference between the two neighbors and selects
the correct one based on the context of the instruction

The recently proposed LLM-based VLN agents [11, 12]
use a zero-shot approach for VLN tasks. NavGPT [11] em-
ploys GPT-4 [2] to make navigation decisions and per-
form reasoning tasks in pure text form. More specifically,
NavGPT first generates the textual description for the ob-
servations that the agents’ cameras capture during navi-
gation by a multi-modal image-to-text model Blip-2 [13].
Then, the prompt manager of NavGPT constructs the
prompt by incorporating the given instruction, the infor-
mation about the environment at the agent’s current po-
sition, the reachable neighbors that can be selected for
the next movement, and the navigation history. The con-
structed prompt is sent to GPT-4 for text auto-completion,
and GPT-4 [2] will then analyze the situation and deter-
mine the next move. The prompt and the response are then
concatenated as the navigation history for the next step.

Previous LLM-based VLN agents adopt single-modal
LLM:s for navigation decision-making in the pure text form
and separate the image-to-text process from the decision-
making. This could lead to the image-text gap in the per-
formance of VLN tasks. As shown in Fig. 1, the image-to-
text translation using a separated multi-modal model can-
not generate more instruction-related textual descriptions
of the observations at the agent’s current position because
reasoning and decision-making occur after the image-to-
text translation. With the development of LLMs, there has
been an increasing emergence of multi-modal LLMs, such
as GPT-4-Vision [4] and Gemini [14]. Such multi-modal
LLMs accept multi-modal queries that include both text
and visual input. This makes it possible to construct the
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LLM-based VLN agents in an end-to-end, multi-modal
manner.

However, there are some problems for the multi-modal
LLM-based VLN agents. First, including images in the
multi-modal query significantly increases the number of
tokens in the prompt sent to the multi-modal LLMs, which
reduces their response speed. Besides, due to the token
limit of the prompt, it is impossible to include the visual-
modal history, e.g., observations along the navigation path
in the query. The multi-modal LLM-based VLN agent
needs to develop a new mechanism to manage and em-
bed the navigation history in the query with higher ef-
ficiency. Second, existing multi-modal LLMs often fail
to understand the spatial relationship between the ob-
jects from different views and the VLN agent. For exam-
ple, it is difficult for Gemini-Pro to understand the dif-
ference between going upstairs and downstairs. There-
fore, an elaborate prompt management system needs to
be constructed to manage different situations in indoor
environment navigation. Third, the limited token quota
for multi-modal LLM queries hinders long-range planning
and backtracking during navigation, as the queries do not
contain enough history information along the navigation
path. Thus, the multi-modal LLM-based agents need to
include a planning and backtracking mechanism. Finally,
the computational burden and cost are also major barriers
to the widespread adoption of LLM-based VLN agents.

In this paper, we propose a novel multi-modal LLM-
based agent for VLN. We first disassemble the VLN task
into different subtasks and design different prompts for
those subtasks, and then we adopt a prompt manager to
manage the prompts and select the proper prompt for the
LLM query based on the situation of the VLN agents dur-
ing navigation. The subtask prompts and the prompt man-
ager aim to perform the VLN tasks in different scenarios
with multi-modal LLM queries, given the limited token
quota, and thus address the gap between the image-to-
text translation and the navigation decision-making. More
specifically, we design two important queries for VLN with
LLMs: the main query and the instruction reduction query.
The main query aims to select one neighbor as the next
position the agent should move to at the first step, or stop
the agent at the current position and terminate the navi-
gation based on the given instruction. The main query fo-
cuses solely on the first step of the navigation, regardless
of the length of the instruction, and thus does not require
information about navigation history. The instruction re-
duction query generates the new instruction based on the
instruction for the entire navigation task and the progress
made in the last step of the agent’s navigation. The new in-
struction specifies the rest of the navigation task that the
agent should complete. Then, the newly generated instruc-
tion can be applied to the main query for the next step,
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as the first step of the new instruction has not been com-
pleted. Moreover, we present a termination check and se-
lection mechanism that identifies whether the navigation
agent has reached its destination. This mechanism also
selects the best-matched destination in history as the fi-
nal stopping point. We design the backtracking and probe
strategy to improve the success rate of the navigation.

In summary, the contributions of our paper are as fol-

lows:

1) We are the first to incorporate the multi-modal
LLMs into VLN agents to mitigate the gap between
image-to-text translation and navigation
decision-making.

2) We propose a novel multi-modal LLM-based agent
that disassembles the VLN task into a series of
subtasks and performs the subtasks with elaborate
prompts and a prompt manager for process control.

3) Our method outperforms previous LLM-based VLN
agents in both R2R [9] and REVERIE [15] datasets.
Besides, our method is based on cost-free LLM APIs,
which is important for the wide application of
LLM-based VLN agents.

2 Related work

VLN [9, 10, 15] requires an agent to perform a language-
driven navigation task in an indoor environment, which
is both important and fundamental for widely applica-
ble embodied navigation agents. Tailored to various prac-
tical scenarios, many different VLN benchmarks have
been studied, including step-by-step instructions such
as R2R [9] or RxR [16], navigation with dialogs such as
CVDN [17], and navigation for remote object ground-
ing such as REVERIE [15] and SOON [18]. Besides, there
are also benchmarks in both discrete [9] and continuous
environments [10] for evaluating agents’ performance in
coarse-grained and fine-grained control.

Existing VLN agents rely on elaborately designed mod-
ules and training strategies, or other data-related tech-
niques including data augmentation [19, 20], memory
mechanism [21-23], and pre-training [24, 25] to alleviate
data scarcity. However, adapting the VLN agents trained in
the seen environments to unseen environments is difficult,
as shown in the large performance gap in previous VLN
studies [21, 26]. In order to address more complex unseen
scenarios and a more diverse range of instructions, some
methods [11, 12, 27, 28] adopt the LLM:s for their reason-
ing and knowledge storage and perform the VLN tasks in
a zero-shot manner. However, previous LLM-based VLN
agents perform the navigation tasks in a plain text format.
For example, NavGPT [11] first uses Blip [13] to convert
the visual-modal observations along the navigation path to
the text-modal description, and then adopts GPT-4 [2] for
navigation inference, resulting in the translation gap be-
tween observation and textual inference. Besides, the LLM
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queries lead to excessive model invocation costs, which
hinders the LLM-based VLN agents from wide application
in real scenarios. In this paper, we aim to mitigate the two
problems by designing an elaborate prompt system and
adopting inexpensive and inferior LLMs for VLN agents.

Based on Transformers [29], LLMs [1, 30-39] have
achieved massive success in the field of language process-
ing by scaling up the model size and the pre-training cor-
pus. Some studies first pre-train the LLMs to obtain most
of the capability, and then adopt instruction tuning [40, 41]
to improve model performance and generalization to un-
seen tasks. Some research focuses on interaction tools and
plugins [42, 43], Internet access API calls [44], or local
databases to expand the knowledge of LLMs [45]. Some
techniques include a hierarchical system to align the rea-
soning and corresponding actions [46, 47], and chain of
thought (COT) [48].

Vision language models (VLMs) [49—52] are LLMs aug-
mented with visual inputs and can process visual lan-
guage tasks in a multi-modal manner. VLMs use cross-
attention [49, 50] to fuse the visual information into in-
termediate embeddings or they use an auto-regressive
approach to tokenize the visual input alongside the text
tokens [13, 51, 53-58]. In this paper, we adopt Gemini-
Pro-Vision [14] as the VLM for multi-modal queries in our
method.

Some studies [5-7, 59-62] aim to leverage LLMs for em-
bodied applications. These LLMs are utilized for planning,
reasoning [7, 63—65], and physical environment percep-
tion with textual description [66], perception APIs [67], or
multi-modal models [55]. Other research focuses on robot
manipulation and low-level control through pre-defined
primitives and sequential policy composition [5], as well
as reward design and exploration in reinforcement learn-
ing [68]. For navigation tasks, LLMs are utilized for land-
mark or subgoal identification [69], code generation [70],
or commonsense knowledge extraction [71].

3 Method

The framework of our method is depicted in Fig. 2. The
instruction for each episode is sent to the prompt man-
ager to prepare the meta information for further queries.
Then, the agent prepares the observations of each neigh-
boring viewpoint as the candidates for the next movement.
After the neighboring viewpoint filtering, the prepared ob-
servations and instructions, along with their metadata, are
sent to the prompt manager for the main query. There, the
multi-modal LLM receives the input and selects one ob-
servation as the predicted viewpoint for the agent’s next
movement. Given the predicted viewpoint, the agent col-
lects the wide-angle observation before and after moving
toward the selected viewpoint. Then, the agent sends the
two observations with the instruction to LLMs for instruc-
tion reduction. The new instruction generated by the in-



Zhao et al. Visual Intelligence (2026) 4:1

Page 4 of 13

! -

Enter the door to the left of the globe.
Walk forward and continue down the
corridor. Continue straight until you

| First step I

—

Instruction

Regular .
e reduction

reach a circular design on the floor. Wait
here.

A\ 4

Subtask
type

Instruction

Observations toward each neighbor

\ Instruction information

>
->

Stair-related

Directional

Subtask prompt selection

l Prompt manager ...

—— Main query —b»| Agent action —{  Backtrack

o )
Observation before and after agent action

Forward

[VU: Vi, Vo, V3, Vgeeoy Vi, Vi ]

[VOr Vi, Vo, Vi Ve Ve—1, Ve ]

History & navigation Termination viewpoint

A

Update observations

Figure 2 The main framework of NavGemini. The prompt manager analyzes the instruction and selects the corresponding subtask prompt for the
main query. The main query decides the agent action by selecting one neighbor to forward based on the observations, termination or backtracking.
The instruction reduction approach reduces the instruction to eliminate the completed subtasks. The trajectories are maintained for termination
selection and backtracking. v; is the i-th viewpoint in the navigation trajectory
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Termination selection |«
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struction reduction approach is used as the new instruc-
tion for the next movement step. The overall algorithm is
shown in Algorithm 1.

3.1 Problem formulation

In this paper, we study the LLM agents under the VLN set-
ting in discrete environments, where the agent navigates
the environments through the pre-defined discrete view-
points. Given an instruction W = (wy, wy, ..., wy) consist-
ing of N words in natural language, the agent starts from
the given starting viewpoint and aims to follow the instruc-
tion W to reach the destination viewpoint. Suppose the
agent is located at viewpoint v, at step ¢, the agent can
obtain the panoramic observation O at v; and the direc-
tions and distances of the M,, neighbouring viewpoints
Vi,V ooy V;Wv: }. Each neighboring viewpoint v/, has a dif-
ferent direction (heading) %, and distance d, concerning
the agent’s current position and orientation. The agent
must select a neighboring viewpoint to move toward as the
next step or stop at the current viewpoint when the agent
believes the destination is reached.

Similar to previous studies [11], the neighbor selection
is based on neighbor observations. More specifically, each
neighbor v, of the current viewpoint v, is attached to a
neighbor observation O,, ,, which is what the agent cam-
era observes when looking to v/, from v,. The LLM agent
selects a neighbor observation O,/ as the target, which
indicates that the agent should move toward v/, as its next
action. If the agent decides to stop at the current position
after observing all the neighbors and the surrounding en-
vironment, it selects no neighbor and terminates the nav-
igation.

3.2 Main query: neighbour selection with multi-modal
prompt

In this section, we aim to mitigate the central problem
of VLN with multi-modal LLMs, i.e., neighbor selection
with multi-modal prompts. The difficulty of this problem
lies in several aspects. First, the images in the multi-modal
prompts that are sent to the multi-modal LLMs take a lot
of token quota in LLM queries. Prompts with a larger num-
ber of tokens not only increase the computational bur-
den but also decrease the performance of LLMs. There-
fore, we have to design multi-modal prompts for neigh-
bor selection that reduce the number of tokens for greater
efficiency. Second, the token limit for LLM queries re-
stricts the usage of multi-modal history. When an LLM
agent needs to decide on its next move during a naviga-
tion task, both the textual and visual history information
are important for the decision. However, the history of
the agent could be so extensive that it would be impos-
sible to fit all the visual observations along the naviga-
tion path into the multi-modal prompts. One natural so-
lution to this problem is to truncate the history, which in-
volves setting a limit on the length of the history obser-
vations and removing the oldest observations along the
path. However, this will cause a misalignment between
the instruction and the history, resulting in unsatisfactory
performance. Third, prompt management is necessary for
multi-modal LLMs. The instructions in VLN often include
different types of sub-tasks in the same instructions, and
different sub-tasks require different multi-modal prompts
to provide more fine-grained queries and higher perfor-
mance in navigation. For example, the instruction “Turn
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Algorithm 1: NavGemini: A multi-modal LLM
agent

Input: Instruction Iy; Starting viewpoint v,
Params: ¢.: Starting step for termination check;
Mitep: Max step number. Mgepi: Max
depth.
1 Initialize history trajectory 7Ty, and navigation
trajectory 7T,, termination candidate set C.
2 fort=0,...,Msep—1do

3 Collect neighbor observations
O = {Ovm’l’ ey OVM,%}
4 if instruction I; is “stop” or | 7,| > Mdeptn then
5 if |C| > 0 then
6 Perform termination selection with C
7 Update trajectories 7, and 7T,
8 break
9 else
10 Backtrack and update trajectories Ty
and 7T,
11 Restore instruction I;_; as I;,1
12 else
13 Select neighbour v;,; by main query with
I; and O’
14 Update trajectories 7, and 7,
15 Generate the instruction /;,; by
instruction reduction
16 Perform termination check for v;,; and
update Cift+1> ¢,

O_utput: History trajectory Tn

left, then go to the living room” involves two different sub-
tasks, the directional subtask and the target-relative sub-
task. To achieve higher performance, we need to design
two different prompts for each task, and using a simple
overall prompt for both subtasks will reduce the accuracy.

Based on the above analysis, we propose solving the
neighbor selection problem in the first step only. In other
words, we disregard the history of neighbor selection and
instruct the multi-modal LLMs to focus solely on the ini-
tial selection during navigation, regardless of the length
of the navigation instruction. Hereinafter, this process is
referred to as the main query for LLM-based VLN. The
main query is performed by the prompt manager in our
method. The prompt manager consists of the first step
prompt, the subtask type prompt, and a series of neighbor
selection prompts designed for each type of subtask. Given
an instruction w and the observations {Ow,vi”"’ow,v;}
of the n neighboring viewpoints from the agent’s current
position v, the prompt manager first uses the first step
prompt to extract the first movement of the given instruc-
tion, and then the subtask type prompt decides which sub-
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task the first step of the instruction belongs to. Given the
subtask type, the prompt manager selects the correspond-
ing neighbor selection prompt to perform the main query.

We present three different subtasks for LLM-based
VLN instructions: regular subtask, directional subtask,
and stair-related subtask. Directional subtask refers to
the subtask that involves direction instructions, e.g., turn
left/right/around, and move forward/back. Stair-related
subtask includes two different instructions: go upstairs
and go downstairs. All the other instructions are assigned
to the regular subtask. After selecting the corresponding
neighbor selection prompt, we prepare the observations
{OW/1 s+, O, } of the n neighbors from the agent’s cur-
rent position v;, and query the multi-modal LLM to deter-
mine which observation most likely indicates the direction
in which the agent should move at the first step.

3.3 Instruction reduction

The multi-modal LLM-based agent can perform the first
step of the main query when given a navigation instruc-
tion. However, the navigation path of the instruction al-
ways contains multiple steps. In this section, we generate
a new instruction based on the last step taken by the navi-
gation agent. This new instruction has the first step as the
subtask that the agent should perform in the current step.
For example, if the agent walked down one flight of stairs
after being given the instruction “Walk down one flight of
stairs and stop on the landing,” the instruction reduction
process should generate the new instruction “Stop on the
landing” With the newly generated, reduced instructions,
the LLM-based VLN agent can reuse the main query for
the next step without including the history observations
or the path in the query.

The key to the instruction reduction process is the iden-
tification of the subtasks that have been accomplished in
the last step. Therefore, in the instruction reduction query,
we present observations of the agent’s movement before
and after the last step {Opefores Oafter }- Besides, we also pro-
vide the directional and stair-related information for the
final step so that the LLM can identify the completeness of
the directional and stair-related subtask.

More specifically, during the instruction reduction
phase, we first instruct the LLM to extract the landmarks
and directions mentioned in the instruction in order be-
cause the landmarks and directions can be strong indica-
tors of whether the current navigation task is complete. We
also extract the first step subtask of the current instruction
for LLM’s reference in instruction reduction. The two ob-
servations {Opefores Oafter }, the landmark and direction list,
and the first step of the instruction are provided for in-
struction reduction query. We ask the multi-modal LLM
to summarize the key objects in the two observations and
to compare the differences between the two images. Then,
the LLM needs to generate a new instruction that con-
siders the difference in observations, the first step of the
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instruction, and the direction and stair information of the
last step.

The process of reducing instructions ends when all the
subtasks in the instruction are completed in the final step.
In this case, the LLM generates “stop” as the new instruc-
tion, and the agent stops at the current position. Therefore,
the instruction reduction naturally provides a termination
check for VLN.

3.4 Termination check and selection

The LLM-based VLN agent can perform the navigation
task with the main query and instruction reduction. How-
ever, the instruction reduction often fails to identify the
completeness of the final step of navigation tasks, be-
cause termination identification requires an in-place un-
derstanding of the surrounding environment, whereas
the instruction reduction only focuses on observations in
front of the LLM-based agent. Therefore, we use a termi-
nation check and selection mechanism to identify termi-
nation viewpoints, which can provide a more concise stop-
ping viewpoint from the visited viewpoints in the history
path.

Suppose the multi-modal LLM-based agent arrives at
the viewpoint v; at step ¢, and the history trajectory till
step tis T = {v1,vo,..., ). Given a hyper-parameter f., we
collect the panoramic observations Opano of v; if £ > £,.
Then, we use a termination check prompt to query the
multi-modal LLM if the viewpoint v; is the destination
of the corresponding instruction. The multi-modal LLM
can answer the query with one of the three options: Yes,
No, or Unknown. “Unknown” indicates that the LLM is
not sure whether viewpoint v; is the destination due to
insufficient information. Please note that the termination
check prompt does not terminate the agent regardless of
the query answer. The navigation agent terminates when
the instruction reduction process generates “stop” as the
new instruction or the navigation path has reached the
navigation depth limit, and all the viewpoints since step
t. will go through the termination check.

After the navigation agent stops, the termination check
generates a set of termination viewpoint candidates C that
includes the viewpoints with “Yes” answers, and we need
to select one viewpoint from C as the stopping point. To
this end, we use a termination selection prompt to se-
lect the destination from C. If C contains only one can-
didate v, then v will be selected as the destination. If C =
(i, vl,...,vI} where n > 2 and T is the timestamp when
the navigation agent stops, we first collect the observa-
tions {O 1T|vl.T € C} for each candidate v! € C, where
pre(v}) is the predecessor of candidate v/ in the history
trajectory 7, and O 7 is the observation looking to-

i

Pre(viT),v

pre(viT),v
ward v! at viewpoint pre(v]). Then, the observations are
sent to the multi-modal LLM for termination selection
query with the prompt, and the LLM needs to select one
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candidate as the final termination viewpoint for the agent.
Note that all the viewpoints in C appear in the navigation
trajectory 7T, and the agent can always travel back to the
selected candidate.

An important difference between termination check and
termination selection is the observations sent to the LLMs.
In termination check, we collect the panoramic observa-
tions of viewpoints to provide sufficient information about
the surrounding environments, while in termination se-
lection, we only collect the agent’s observations of the
candidate from the navigation history, which reduces the
number of prompt tokens and provides visual information
about the blind angle at v/, such as above or below the
agent.

3.5 Backtracking
The termination check process generates a set of termina-
tion viewpoint candidates C. If the agent has reached the
maximum number of navigation steps or has reduced the
navigation instruction to the “stop” instruction, the agent
needs to select one candidate from C as the final destina-
tion and stop at it. However, if C is empty, and no available
viewpoint can be selected as the termination viewpoint,
the agent may have navigated in the wrong direction and
become farther from the ground truth destination. In this
case, the agent needs to backtrack to the previous view-
point and mark the current viewpoint as a dead end.
More specifically, our method sets two different hyper-
parameters for backtracking control: the max step num-
ber for navigation M., and the max depth for navigation
Mgepth- The agent also maintains two different trajectories
for backtracking: the history trajectory and the navigation
trajectory. The history trajectory records all viewpoints
that the agent has visited in the navigation history, while
the navigation trajectory records the navigation path after
eliminating the backtracking movement. For example, if
the agent navigates from viewpoint a to b and then decides
to backtrack to a, the history trajectory will be (a,b,a)
while the navigation trajectory will be (2). When decid-
ing the next movement, the agent checks whether there are
no candidates in C and 1) the length of the navigation tra-
jectory exceeds Mgepth, or 2) all the next reachable neigh-
bors of the current viewpoint are marked as dead ends. If
yes, the agent backtracks to the last viewpoint recorded in
the navigation trajectory and modifies the two trajectories
accordingly. The agent also records the reduced instruc-
tion at each step and restores the corresponding instruc-
tion when backtracking. The agent terminates when 1) the
history trajectory length exceeds Mjp, or 2) the reduced
instruction is “stop” and there are candidates in C, or 3) the
navigation trajectory length exceeds Myepn and there are
candidates in C.
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3.6 Probe

The neighbor selection process selects the next viewpoint
based on the observations of the agent’s current position.
However, such observations fail to provide LLMs with dis-
tance information about different neighbors. Two different
neighbors with different distances can have similar direc-
tions and thus lead to similar observations. As the exper-
iments showed, the multi-modal LLM cannot effectively
distinguish the small angle changes in the neighbor selec-
tion, while the neighbors that are close in direction could
lead to completely different areas due to their large dis-
tance gap. Therefore, we choose to use a probe prompt
for a more fine-grained selection when the selected target
viewpoint has a close-in-direction neighbor.

Given an angle threshold a. as a hyper-parameter, if the
agent arrives at viewpoint v;, and the angle between the
selected viewpoint v,,; in the main query and its nearest
neighbor v";,; is smaller than 4., the agent first navigates
tov,; and v"4,; to collect the observations O,) and Oy,
in front of the agent. Then, the probe prompt is sent to
the multi-modal LLM with the two observations. The LLM
needs to return one observation as the next step v;,;. For
a fair comparison, we append the entire path of the probe
process, i.e., {Vs, V,, 1, Ve, V'141, Ve, Ver1} to the history trajec-
tory of the agent.

Our current design employs handcrafted prompt tem-
plates for different subtasks, which is a deliberate choice
made to ensure stable performance despite the limitations
of current multi-modal LLMs. Nevertheless, automated
prompt optimization techniques [72-74] can potentially
reduce the reliance on manual design, improve general-
ization to new tasks, and further enhance scalability. We
consider this a promising direction for future work.

4 Experiment

4.1 Experiment settings

In this section, we select two widely-applied benchmarks
for VLN agent evaluation, R2R [9] and REVERIE [15]. Both
benchmarks are collected in discrete environments, i.e.,
the environments are discretized into viewpoints, and the
navigation agent travels through the connections between
viewpoints. R2R and REVERIE have different instruction
styles. R2R provides step-by-step instructions to the nav-
igation agents, which describe the detailed ground truth
path from the starting point to the destination. REVERIE
only offers high-level instructions that describe the des-
tination and target object of the navigation task. Both
R2R and REVERIE are based on the Matterport3D simu-
lator [75]. The R2R dataset contains 7189 trajectories and
each trajectory is described by three fine-grained instruc-
tions. There are four different dataset splits for R2R: train-
ing, validation seen, validation unseen, and test. The four
dataset splits are collected from 61, 56, 11, and 18 indoor
scenes, respectively. The “seen split” validation set com-
prises scenes that are present in the training set, whereas
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the “unseen split” validation set comprises scenes that are
not present in the training set. Following previous zero-
shot VLN studies, we apply the 783 trajectories in the
11 val unseen environments in all of our experiments.
REVERIE shares the same dataset split with R2R, and there
are 10,466 instructions from 60 scenes, 4944 instructions
from 56 scenes, and 6292 instructions from 16 scenes from
the training, validation and test set, respectively. Simi-
lar to R2R, we test our method on the validation unseen
set, which contains 3521 instructions from 10 scenes for
REVERIE. We neglect the object grounding task and fo-
cus on the navigation for REVERIE to unify the experiment
settings.

We adopt the evaluation metrics for VLN, including nav-
igation error (NE, the distance between the agent’s final
location and the target location), success rate (SR), oracle
success rate (OSR, SR given Oracle stop policy), and SR
penalized by path length (SPL).

Different from previous LLM-based VLN agents, which
adopt GPT-4 for LLM queries, our method uses Gemini-
Pro-Vision and Gemini-Pro for multi-modal queries and
text-modal queries, respectively. Gemini-Pro-Vision and
Gemini-Pro are currently free to use if the request per
minute (RPM) stays within a certain limit. Therefore, com-
pared to previous LLM-based VLN agents, we reduced the
query cost by 100%. In our experiments, we set the £, as
6, Miep as 20 and Mgep, as 10. For LLM queries that in-
volve images, we use Gemini-Pro-Vision, which is cost-
free when the RPM is below 60. For purely textual LLM
queries, we use Gemini-Pro, which is also free for use.

4.2 Experimental results on R2R dataset

The experimental results of our method on the R2R dataset
are presented in Table 1. Following previous studies, we
categorize previous VLN agents into three classes: Train
Only, Pretrain + Fine-tune, and No Training. Train Only
includes the VLN agents that are trained with the training
split of the R2R dataset. Pretrain + Fine-tune methods first
pre-train the agent with proxy tasks, and then fine-tune
the agent with the VLN data. No Training indicates the
zero-shot settings for the VLN task, which include DuET
with initialized LXMERT, NavGPT, as well as two versions
of our method: one with the probe and termination check
strategies, and one without.

As shown in Table 1, both variants of our method sig-
nificantly outperform the competitors in the No Train-
ing setting in SR. More specifically, our method using the
probe and termination check strategies improves the SR
by 5.7% while our method without using the strategies im-
proves the SR by 3.3%. Our method using the probe and
termination check strategies also achieves the best perfor-
mance in NE and OSR, but significantly increases the total
length of the navigation path. The reason is that both the
probe and termination check strategies require the VLN
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Table 1 Comparison with previous methods on R2R validation unseen split. TL: total length; NE: navigation error; OSR: oracle success
rate; SR: success rate; SPL: success rate penalized by path length. The best score is highlighted in bold

Training schema Method TL NEJ OSR? SR1 SPLA
Train Only Seq2Seq [9] 8.39 7.81 28 21 -
Speaker Follower [76] - 6.62 45 35 -
EnvDrop [77] 10.70 5.22 - 52 48
Pretrain + Fine-tune PREVALENT [25] 10.19 4.71 - 58 53
VLNOBERT [78] 12.01 393 69 63 57
HAMT [21] 11.46 2.29 73 66 61
DUET [26] 13.94 331 81 72 60
No Training DUET (Init. LXMERT [79]) 22.03 9.74 7 1 0
NavGPT 1145 6.46 42 34 29
Ours (w Probe & Termination) 4033 5.79 55.7 39.7 133
Ours (w/o Probe & Termination) 11.66 6.00 458 373 321
Table 2 Comparison with previous methods on REVERIE validation unseen split
Training schema Method OSRp SR1 SPLH
Train Only Seq2Seq [9] 8.07 4.20 2.84
RCM [76] 14.2 9.29 6.97
SMNA [77] 1.3 8.15 6.44
FAST-MATTN [77] 282 144 7.19
Pretrain + Fine-tune HAMT [21] 354 316 29.6
DuET [26] 50.0 458 353
No Training NavGPT 283 19.2 14.6
Ours (w Probe & Termination) 28.6 22.0 8.7
Ours (w/o Probe & Termination) 256 20.6 16.9

agent to repeatedly move back and forth between several
viewpoints, thus greatly increasing the TL and reducing
the SPL. For example, a probe operation usually increases
the navigation path by between 2 and 4 viewpoints, i.e.,
a— b — a— ¢ — a— b/c, where a is the current posi-
tion and b and c are the two candidates for probe opera-
tion. Our method removes the two components and suc-
cessfully achieves the best performance in SPL, which is
3.1% higher than NavGPT, and the TL of this method is
only slightly higher than NavGPT. As shown in Table 1, the
experimental results clearly demonstrate the superiority of
our method compared to other zero-shot VLN agents.

4.3 Experimental results on the REVERIE dataset

The experiment results of our method on the REVERIE
dataset are presented in Table 2. Different from the R2R,
REVERIE only provides high-level instructions that briefly
describe the destination and target objects for the VLN
agents. We compare our method with other competitors
in three metrics, OSR, SR and SPL. Similar to Table 1,
there are three different groups: Train Only, Pretrain +
Fine-tune, and No Training, and we provide the perfor-
mance of two different variants of our method. As shown
in Table 2, our method using the probe and termination
check strategies outperforms NavGPT in both OSR and SR

by 0.3% and 2.8%, respectively, while our method without
using the probe and termination check strategies outper-
forms NavGPT in both SR and SPL by 1.4% and 2.3%, re-
spectively.

5 Analysis

5.1 The performance contribution for each component

To demonstrate the effectiveness of each component in our
method, we ablate our method and provide the experimen-
tal result on the R2R dataset validation unseen split in Ta-
ble 3. Main query and instruction reduction are necessary
for the navigation tasks, and we ablate the three other com-
ponents, backtrack, termination check and selection, and
probe. We report three metrics: total length (TL), success
rate (SR), and SPL. As shown in Table 3, backtrack, termi-
nation, and probe contribute to the performance improve-
ment on SR by 0.5%, 0.7%, and 1.7%, respectively. Back-
tracking contributes little because, in most navigation, the
agent can find at least one candidate termination view-
point and thus does not satisfy the backtracking condition.
Though the success rate is improved, both the probe and
termination will significantly increase the total length of
the navigation path and thus reduce the SPL.
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Table 3 Performance contribution of the three components in
our method
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Table 4 Accuracy of termination check for each type of query
answer

Components Performance Answer Yes No Unknown

Backtrack Termination Probe TL SRt SPLA True 0401 0.138 0.244
1130 36.8 317 False 0.599 0.862 0.756

v 11.66 373 321

v v 20.54 38.0 20.1

v v v 4033 397 133
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Figure 3 The step-wise success rate and distance to the
corresponding ground truth viewpoints during navigation. As
navigation continues, both the success rate and the strict success rate
decrease, and the distance increases

5.2 Performance at each step

Figure 3 summarizes the step-wise statistics of our method
during navigation on the R2R dataset. We provide three
metrics: SR, strict SR, and distance at each step. Each met-
ric is calculated concerning the corresponding viewpoint
in the ground truth path. For example, the SR at the first
step is the ratio of navigation paths in which the first step is
within 3 meters of the first viewpoint in the ground truth
path. Different from the SR, the strict SR is the ratio of nav-
igation paths that strictly match the ground truth paths.
The distance metric is the distance between the agent’s
current position and the corresponding viewpoint in the
ground truth path. As shown in Fig. 3, as the length of nav-
igation increases, both the SR and the strict SR decrease,
and the distance continues to increase.

5.3 Analysis for termination check and selection

The termination check process generates answers given
the panoramic observations for each viewpoint to check
whether it is the final destination of a navigation instruc-
tion. The answer is limited to three categories: Yes, No,
and Unknown. Table 4 lists the accuracy for each category
of answer. Since the termination check process is followed
by the termination selection for further classification, the
most important property for the termination check should
be a low false negative rate. False negative predictions will
cause the agent to deviate from the ground truth destina-
tion. As shown in Table 4, only 13.8% of the viewpoints

with the answer “No” are within 3 meters of the destina-
tion. Please note that the ratio could be even smaller if
we only considered the viewpoints that strictly matched
the ground truth destination to be true. For the Unknown
prediction, the accuracy lies between Yes and No, which
demonstrates that the LLM can effectively identify the dif-
ference between the three responses and answer the query
accordingly.

5.4 The performance of main query

We verify the effectiveness of the main query in our
method by analyzing the SR at the first step, because it
does not involve instruction reduction. As shown in Fig. 3,
at the first step, the strict SR is 62.1% and the SR is 85.0%.
However, the SR does not reflect the accuracy at the first
step because normally the agent is not far from the ground
truth viewpoint at the first step. Therefore, we further
compiled statistics on another indicator, the angular devi-
ation SR, which checks whether the angular deviation be-
tween the selected viewpoint and the ground truth view-
point is below a certain threshold. Given thresholds of
30 and 60 degrees, the angular deviation SR is 72.4% and
82.2%, respectively, i.e., 72.4% and 82.2% of the selected
viewpoints at the first step forms an angle with the ground
truth viewpoint that is less than or equal to 30 and 60 de-
grees. In other words, the multi-modal LLM can gener-
ally identify the direction correctly given the instruction
in most cases. Navigation errors occur because the LLM
cannot distinguish the small angular deviations between
two nearby choices.

Moreover, in the first step of the navigation on the R2R
val-unseen dataset, which contains 2349 instructions, the
probe operation contributes 2.7% strict SR improvement.
More specifically, for the first step of all the 2349 instruc-
tions, the probe operation makes 119 corrections and 55
mistakes. There are 119 cases in which the main query se-
lects a neighbor to the ground truth viewpoint, and then
the probe operation corrects it. Please note that the cor-
rectness of the first step is important for the navigation be-
cause in most cases the ground truth path rarely involves
significant turns. This can be supported by the fact that
the probe operation still improves the SR by 1.7% after the
entire navigation (see Table 3).

6 Ablation on subtask prompts
We have three different subtasks in our method: regu-
lar, directional, and stair-related subtasks. In this section,
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Instruction: Exit the bathroom and walk down the hall to the second doorway on your left. Turn left and enter the room through that doorway.
Main query: Image B. The instruction is "Exit the bathroom ..." You are currently in a bathroom. To exit the bathroom, you should move
toward the door shown in Image B. (Correct direction, but wrong neighbor due to the high similarity between A and B)

Probe:

The first step of the instruction is most likely to be "Exit the bathroom.* ... the rest part of the instruction is "walk down the hall to the second |
doorway on your left. ..."... Based on the rest part of the instruction, the objects, items or indoor places I should see along the navigation path o

are "the hall, the second doorway on the left, and the room", while in the two options: (Analyze the instruction) Neighbor A: ground truth
Image A shows "a hallway and a room". - .

Image B shows "a bathroom and a hallway". (Summarize the observation after the step)

... Image A is more likely to indicate the direction I should go to find the objects, items and indoor places in the above list,_
0 OO RUNR . ..  oc: machc eighon)

Instruction reduction: i |
1. The instruction is "Exit the ...". The concept and direction list of the instruction is ["Exit the bathroom", "walk down the hall", "the second
doorway on your left", "turn left", "enter the room"] ... (Summarize the landmarks along the navigation path)

o

e

Neighbor C

)E

Observation after moving to A Observation after moving to B

3. At the first step, [ move to the right.

doorway on your left". (Summarize the observations before and after the step, and identify the progress

2. Before the first step movement, the image shows a bathroom with a toilet, a sink, and a mirror. ..., the image shows "Exit the bathroom".

4. After the first step movement, the image shows a hallway with a door on the left. ..., the image shows "walk down the hall" and "the second

(Generate the new instruction)

Figure 4 A successful case on the R2R dataset that shows the components of our method. The case demonstrates the multi-modal LLM'’s ability in
multi-modal analysis based on both observations and instruction context. The instruction analysis (blue), the observation summary (yellow), and the
conclusion (green) in the LLM's response are highlighted. The images on the right sides are the observations provided to the LLMs for queries

- I'-

Observation before moving to A Observation after moving to A

Table 5 The performance contributions of three different
subtasks in our method. They are regular, directional, and
stair-related subtasks

Components Performance
Regular Directional Stair SRt OSRp
v 351 48.7
v v 36.2 50.8
v v v 39.7 55.7

we study the performance contribution of each subtask,
and the experimental results are presented in Table 5. As
shown in Table 5, both directional and stair-related sub-
tasks contribute to performance improvement.

6.1 Case study

We present a successful example on the R2R dataset in
Fig. 4 to demonstrate the multi-modal reasoning ability
of multi-modal LLMs in VLN tasks. As shown in Fig. 4,
given the instruction, the main query successfully obtains
the correct direction, but the selected viewpoint is incor-
rect due to the high similarity between observations to-
ward neighbors A and B. Then, the probe operation an-
alyzes the observations after moving to A and B, respec-
tively, and discover that A is more likely to indicate the di-
rection to finish the rest of the VLN task. After the first
step, the instruction reduction process analyzes the land-
marks along the navigation path and summarizes the ob-
servations before and after the first step. Then, the agent
moves to the doorway at the first step and is facing the hall-
way leading to another area. Finally, the instruction reduc-
tion query generates the new instruction for the next step
correctly.

7 Conclusion
In this paper, we propose a novel multi-modal LLM-
based agent, NavGemini for VLN in a zero-shot manner.

NavGemini decomposes the VLN task into a series of sub-
tasks and constructs an elaborate prompt management
system to query the multi-modal LLM during navigation.
To better utilize the multi-modal LLMs at a lower cost and
reduce the prompt length for a higher-quality response,
NavGemini uses an instruction reduction strategy to elim-
inate the completed part of the given instruction and per-
form the VLN task, focusing on the first step of the re-
duced instruction during navigation. Moreover, NavGem-
ini introduces termination check and selection, backtrack-
ing, and probe operations to further improve the agent’s
performance. The higher performance in extensive exper-
iments and the lower cost demonstrate the superiority and
the potential of our method in zero-shot VLN.
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